Krains's Blog

vuePress-theme-reco Krains    2020 - 2021
Krains's Blog Krains's Blog

Choose mode

  • dark
  • auto
  • light
Home
Category
  • Algorithm
  • LeetCode题解
  • 数据结构
  • 计算机基础知识
  • Java基础
  • Java多线程
  • JVM
  • MySQL
  • 设计模式
Tag
TimeLine
Contact
  • GitHub (opens new window)
author-avatar

Krains

80

Article

22

Tag

Home
Category
  • Algorithm
  • LeetCode题解
  • 数据结构
  • 计算机基础知识
  • Java基础
  • Java多线程
  • JVM
  • MySQL
  • 设计模式
Tag
TimeLine
Contact
  • GitHub (opens new window)

垃圾回收相关概念

vuePress-theme-reco Krains    2020 - 2021

垃圾回收相关概念


Krains 2020-08-06

# 手动GC来理解不可达对象的回收

在默认情况下,通过system.gc()者Runtime.getRuntime().gc() 的调用,会显式触发FullGC,同时对老年代和新生代进行回收,尝试释放被丢弃对象占用的内存。然而system.gc() )调用附带一个免责声明,无法保证对垃圾收集器的调用。(不能确保立即生效)

public class LocalVarGC {

    /**
     * 触发Minor GC没有回收对象,然后在触发Full GC将该对象存入old区
     */
    public void localvarGC1() {
        byte[] buffer = new byte[10*1024*1024];

		System.gc(); 
    }

    /**
     * 触发YoungGC的时候,已经被回收了
     */
    public void localvarGC2() {
        byte[] buffer = new byte[10*1024*1024];
        buffer = null;
        System.gc();
    }

    /**
    * 局部变量表长度是2,0位置存放this,1位置存放buffer,在垃圾收集器回收垃圾时buffer的作用域到了
    * 但是1位置还存放着引用,因此不会被回收
     * 不会被回收,因为它还存放在局部变量表索引为1的槽中
     */
    public void localvarGC3() {
        {
            byte[] buffer = new byte[10*1024*1024];
        }
        System.gc();
    }

    /**
     * 会被回收,因为它还存放在局部变量表索引为1的槽中,但是后面定义的value把这个槽给顶掉了
     */
    public void localvarGC4() {
        {
            byte[] buffer = new byte[10*1024*1024];
        }
        int value = 10;
        System.gc();
    }

    /**
     * localvarGC5中的数组已经被回收
     */
    public void localvarGC5() {
        localvarGC1();
        System.gc();
    }

    public static void main(String[] args) {
        LocalVarGC localVarGC = new LocalVarGC();
        localVarGC.localvarGC3();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

# 内存溢出

JVM的堆内存不够,可能有两种原因

  • Java虚拟机设置的堆内存不够
  • 代码中创建了大量大对象,并且长时间不能够被垃圾收集器收集(存在被引用)

对于老版本的oracle JDK,因为永久代的大小是有限的,并且JVM对永久代垃圾回收(如,常量池回收、卸载不再需要的类型)非常不积极,所以当我们不断添加新类型的时候,永久代出现OutOfMemoryError也非常多见,尤其是在运行时存在大量动态类型生成的场合;类似intern字符串缓存占用太多空间,也会导致OOM问题。对应的异常信息,会标记出来和永久代相关:“java.lang.OutOfMemoryError:PermGen space"。

随着元数据区的引入,方法区内存已经不再那么窘迫,所以相应的OOM有所改观,出现OOM,异常信息则变成了:“java.lang.OutofMemoryError:Metaspace"。直接内存不足,也会导致OOM。

javadoc中对outofMemoryError的解释是,没有空闲内存,并且垃圾收集器也无法提供更多内存。这里面隐含着一层意思是,在抛出OutofMemoryError之前,通常垃圾收集器会被触发,尽其所能去清理出空间。

# 内存泄露

严格来说,只有对象不会再被程序用到了,但是GC又不能回收他们的情况,才叫内存泄漏。

但实际情况很多时候一些不太好的实践(或疏忽)会导致对象的生命周期变得很长甚至导致00M,也可以叫做宽泛意义上的“内存泄漏”。

尽管内存泄漏并不会立刻引起程序崩溃,但是一旦发生内存泄漏,程序中的可用内存就会被逐步蚕食,直至耗尽所有内存,最终出现outofMemory异常,导致程序崩溃。

例子

  • 单例模式的对象的生命周期和应用程序一样长,在单例程序中,如果持有对外部对象的引用的话,那么这个外部对象是不能被回收的,则会导致内存泄露的产生
  • 一些提供close的资源未关闭导致内存泄露,数据库连接(dataSourse.getConnection()),网络连接(socket)和io连接必须手动close,否者是不能被回收的

# Stop the world

stop the world,简称STW,指的是GC事件发生过程中,会产生应用程序的停顿。停顿产生时整个应用程序线程都会被暂停,没有任何响应,有点像卡死的感觉,这个停顿称为STW。

可达性分析算法中枚举根节点(GC Roots)会导致所有Java执行线程停顿。枚举根结点的工作中必须在一个能确保一致性的快照中进行,一致性指整个分析期间整个执行系统看起来像被冻结在某个时间点上,如果出现分析过程中对象引用关系还在不断变化,则分析结果的准确性无法保证。

被STW中断的应用程序线程会在完成GC之后恢复,频繁中断会让用户感觉像是网速不快造成电影卡带一样,所以我们需要减少STW的发生。

STW事件和采用哪款GC无关所有的GC都有这个事件。

哪怕是G1也不能完全避免Stop-the-world情况发生,只能说垃圾回收器越来越优秀,回收效率越来越高,尽可能地缩短了暂停时间。

STW是JVM在后台自动发起和自动完成的。在用户不可见的情况下,把用户正常的工作线程全部停掉。

开发中不要用system.gc() 会导致stop-the-world的发生。

# 并发(Concurrent)

在操作系统中,是指一个时间段中有几个程序都处于已启动运行到运行完毕之间,且这几个程序都是在同一个处理器上运行。

并发不是真正意义上的“同时进行”,只是CPU把一个时间段划分成几个时间片段(时间区间),然后在这几个时间区间之间来回切换,由于CPU处理的速度非常快,只要时间间隔处理得当,即可让用户感觉是多个应用程序同时在进行。

# 并行(Parallel)

当系统有一个以上CPU时,当一个CPU执行一个进程时,另一个CPU可以执行另一个进程,两个进程互不抢占CPU资源,可以同时进行,我们称之为并行(Parallel)。

其实决定并行的因素不是CPU的数量,而是CPU的核心数量,比如一个CPU多个核也可以并行。

对比

并发,指的是多个程序,在同一时间段内同时发生了。

并行,指的是多个程序,在同一时间点上同时发生了。

并发的多个任务之间是互相抢占资源的。并行的多个任务之间是不互相抢占资源的。

只有在多CPU或者一个CPU多核的情况中,才会发生并行。

# 垃圾回收的并发与并行

并发和并行,在谈论垃圾收集器的上下文语境中,它们可以解释如下:

  • 并行:指多条垃圾收集线程并行工作,但此时用户线程仍处于等待状态。如ParNew、Parallel Scavenge、Parallel old;

  • 串行(Serial)相较于并行的概念,单线程执行。如果内存不够,则程序暂停,启动JM垃圾回收器进行垃圾回收。回收完,再启动程序的线程。

  • 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),垃圾回收线程在执行时不会停顿用户程序的运行。用户程序在继续运行,而垃圾收集程序线程运行于另一个CPU上,如CMS、G1垃圾收集器。

# 安全点

程序执行时并非在所有地方都能停顿下来开始GC,只有在特定的位置才能停顿下来开始GC,这些位置称为“安全点(Safepoint)”。

Safe Point的选择很重要,如果太少可能导致GC等待的时间太长,如果太频繁可能导致运行时的性能问题。大部分指令的执行时间都非常短暂,通常会根据“是否具有让程序长时间执行的特征”为标准。比如:选择一些执行时间较长的指令作为Safe Point,如方法调用、循环跳转和异常跳转等。

如何在GC发生时,检查所有线程都跑到最近的安全点停顿下来呢?

主动式中断:设置一个中断标志,各个线程运行到Safe Point的时候主动轮询这个标志,如果中断标志为真,则将自己进行中断挂起。(有轮询的机制)

# 安全区域

Safepoint 机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint。但是,程序“不执行”的时候呢?例如线程处于sleep-状态或Blocked 状态,这时候线程无法响应JVM的中断请求,“走”到安全点去中断挂起,JVM也不太可能等待线程被唤醒。对于这种情况,就需要安全区域(Safe Region)来解决。

安全区域是指在一段代码片段中,对象的引用关系不会发生变化,在这个区域中的任何位置开始GC都是安全的。我们也可以把Safe Region看做是被扩展了的Safepoint。

执行流程

  • 当线程运行到Safe Region的代码时,首先标识已经进入了Safe Relgion,如果这段时间内发生GC,JVM会忽略标识为Safe Region状态的线程,将线程停下来去执行GC
  • 当线程即将离开Safe Region时,会检查JVM是否已经完成GC,如果完成了,则继续运行,否则线程必须等待直到收到可以安全离开Safe Region的信号为止;

# 引用

我们希望能描述这样一类对象:当内存空间还足够时,则能保留在内存中;如果内存空间在进行垃圾收集后还是很紧张,则可以抛弃这些对象。

强引用、软引用、弱引用、虚引用有什么区别?具体使用场景是什么? 在JDK1.2版之后,Java对引用的概念进行了扩充,将引用分为:

  • 强引用(Strong Reference):最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
  • 软引用(Soft Reference):在系统将要发生内存溢出之前,将会把这些对象列入回收范围之中进行第二次回收。如果这次回收后还没有足够的内存,才会抛出内存溢出异常。
  • 弱引用(Weak Reference):被弱引用关联的对象只能生存到下一次垃圾收集之前。当垃圾收集器工作时,无论内存空间是否足够,都会回收掉被弱引用关联的对象。
  • 虚引用(Phantom Reference):一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来获得一个对象的实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。

软引用和弱引用一般用在缓存中,虚引用用在监视对象回收情况

# 强引用 - 不回收

强引用所指向的对象在任何时候都不会被系统回收,虚拟机宁愿抛出OOM异常,也不会回收强引用所指向对象。

# 软引用 - 内存不足即回收

软引用通常用来实现内存敏感的缓存。比如:高速缓存就有用到软引用。如果还有空闲内存,就可以暂时保留缓存,当内存不足时清理掉,这样就保证了使用缓存的同时,不会耗尽内存。

当内存足够时,不会回收软引用指向的对象

当内存不足时,才会回收软引用指向的对象

// 声明强引用
Object obj = new Object();
// 创建一个软引用
SoftReference<Object> sf = new SoftReference<>(obj);
obj = null; //销毁强引用,这是必须的,不然会存在强引用和软引用
1
2
3
4
5

# 弱引用 - 发现即回收

软引用、弱引用都非常适合来保存那些可有可无的缓存数据。如果这么做,当系统内存不足时,这些缓存数据会被回收,不会导致内存溢出。而当内存资源充足时,这些缓存数据又可以存在相当长的时间,从而起到加速系统的作用。

回收条件:一般在弱引用的同时,这个对象可能也被强引用了。如果这个强引用消失了,系统就开始回收弱引用。

// 声明强引用
Object obj = new Object();
// 创建一个弱引用
WeakReference<Object> sf = new WeakReference<>(obj);
obj = null; //销毁强引用,这是必须的,不然会存在强引用和弱引用
1
2
3
4
5

# 虚引用 - 对象回收跟踪

一个对象是否有虚引用的存在,完全不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它和没有引用几乎是一样的,随时都可能被垃圾回收器回收。

它不能单独使用,也无法通过虚引用来获取被引用的对象。当试图通过虚引用的get()方法取得对象时,总是null

为一个对象设置虚引用关联的唯一目的在于跟踪垃圾回收过程。比如:能在这个对象被收集器回收时收到一个系统通知。

虚引用必须和引用队列一起使用。虚引用在创建时必须提供一个引用队列作为参数。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象后,将这个虚引用加入引用队列,以通知应用程序对象的回收情况。

// 声明强引用
Object obj = new Object();
// 声明引用队列
ReferenceQueue phantomQueue = new ReferenceQueue();
// 声明虚引用(还需要传入引用队列)
PhantomReference<Object> sf = new PhantomReference<>(obj, phantomQueue);
obj = null; 
1
2
3
4
5
6
7

我们使用一个案例,来结合虚引用,引用队列,finalize进行讲解

public class PhantomReferenceTest {
    // 当前类对象的声明
    public static PhantomReferenceTest obj;
    // 引用队列
    static ReferenceQueue<PhantomReferenceTest> phantomQueue = null;

    @Override
    protected void finalize() throws Throwable {
        super.finalize();
        System.out.println("调用当前类的finalize方法");
        obj = this;
    }

    public static void main(String[] args) {
        Thread thread = new Thread(() -> {
            while(true) {
                if (phantomQueue != null) {
                    PhantomReference<PhantomReferenceTest> objt = null;
                    try {
                        objt = (PhantomReference<PhantomReferenceTest>) phantomQueue.remove();
                    } catch (Exception e) {
                        e.getStackTrace();
                    }
                    if (objt != null) {
                        System.out.println("追踪垃圾回收过程:PhantomReferenceTest实例被GC了");
                    }
                }
            }
        }, "t1");
        thread.setDaemon(true);
        thread.start();

        phantomQueue = new ReferenceQueue<>();
        obj = new PhantomReferenceTest();
        // 构造了PhantomReferenceTest对象的虚引用,并指定了引用队列
        PhantomReference<PhantomReferenceTest> phantomReference = new PhantomReference<>(obj, phantomQueue);
        try {
            System.out.println(phantomReference.get());
            // 去除强引用
            obj = null;
            // 第一次进行GC,由于对象可复活,GC无法回收该对象
            System.out.println("第一次GC操作");
            System.gc();
            Thread.sleep(1000);
            if (obj == null) {
                System.out.println("obj 是 null");
            } else {
                System.out.println("obj 不是 null");
            }
            System.out.println("第二次GC操作");
            obj = null;
            System.gc();
            Thread.sleep(1000);
            if (obj == null) {
                System.out.println("obj 是 null");
            } else {
                System.out.println("obj 不是 null");
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {

        }
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

最后运行结果

null
第一次GC操作
调用当前类的finalize方法
obj 不是 null
第二次GC操作
追踪垃圾回收过程:PhantomReferenceTest实例被GC了
obj 是 null
1
2
3
4
5
6
7
  • 手动GC来理解不可达对象的回收
  • 内存溢出
  • 内存泄露
  • Stop the world
  • 并发(Concurrent)
  • 并行(Parallel)
  • 垃圾回收的并发与并行
  • 安全点
  • 安全区域
  • 引用
  • 强引用 - 不回收
  • 软引用 - 内存不足即回收
  • 弱引用 - 发现即回收
  • 虚引用 - 对象回收跟踪